Document #	Date Effective
LAT-TD-01168-D1	Draft 11/26/02
Prepared by(s)	Supersedes
Alex Moiseev	None
Subsystem/Office	
Anticoincidence Detector Subsystem	
	LAT-TD-01168-D1 Prepared by(s) Alex Moiseev Subsystem/Office

High-Rate Test for ACD Phototubes

Gamma-ray Large Area Space Telescope (GLAST)

Large Area Telescope (LAT) High-Rate Test for ACD Phototubes

DRAFT

CHANGE HISTORY LOG

Revision	Effective Date	Description of Changes

1. Purpose

This study reports on the performance of ACD phototubes with the flight-design resistor network under high-particle-rate conditions. The performance exceeds the requirement.

2. Definitions and Acronyms

ACD The LAT Anti-Coincidence Detector Subsystem

ADC Analog-to-Digital Converter

AEM ACD Electronics Module

ASIC Application Specific Integrated Circuits

BEA Base Electronics Assembly

CAL The LAT Calorimeter Subsystem

DAQ Data Acquisition

EGSE Electrical Ground Support Equipment

EMC Electromagnetic Compatibility
EMI Electromagnetic Interference

ESD Electrostatic Discharge

FM Flight Module

FMEA Failure Mode Effect Analysis

FREE Front End Electronics

GAFE GLAST ACD Front End – Analog ASIC

GARC GLAST ACD Readout Controller – Digital ASIC
GEVS General Environmental Verification Specification

GLAST Gamma-ray Large Area Space Telescope

HVBS High Voltage Bias Supply
ICD Interface Control Document
IDT Instrument Development Team

I&T Integration and Test

IRD Interface Requirements Document

JSC Johnson Space Center LAT Large Area Telescope

MGSE Mechanical Ground Support Equipment

MLI Multi-Layer Insulation

MPLS Multi-purpose Lift Sling

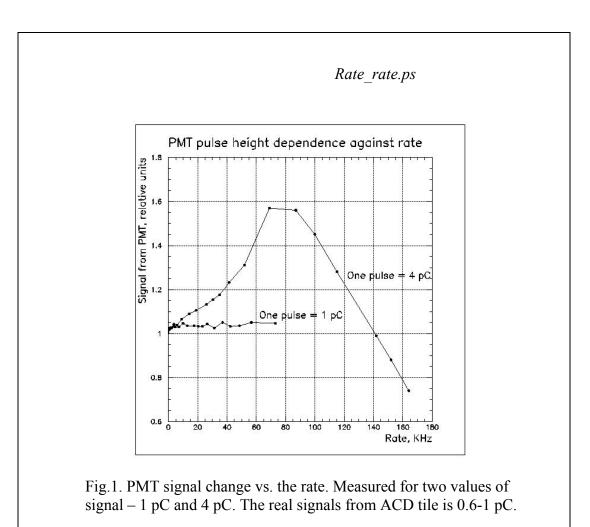
PCB Printed Circuit Board

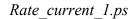
PDR	Preliminary Design Review
PMT	Photomultiplier Tube
PVM	Performance Verification Matrix
QA	Quality Assurance
SCL	Spacecraft Command Language
SEL	Single Event Latch-up
SEU	Single Event Upset
SLAC	Stanford Linear Accelorator Center
TACK	Trigger Acknowledge
TDA	Tile Detector Assembly
T&DF	Trigger and Data Flow Subsystem (LAT)
TBD	To Be Determined
TBR	To Be Resolved
TSA	Tile Shell Assembly
TSS	Thermal Synthesizer System
TKR	The LAT Tracker Subsystem
VME	Versa Module Eurocard
WBS	Work Breakdown Structure
WOA	Work Order Authorization

3. Applicable Documents

Documents relevant to the ACD Photomultiplier Quality Plan include the following.

- 1. LAT-SS-00016, LAT ACD Subsystem Requirements Level III Specification
- 2. LAT-SS-00352, LAT ACD Electronics Requirements Level IV Specification
- 3. LAT-SS-00437, LAT ACD Mechanical Requirements Level IV Specification
- 4. LAT-MD-00039-01, LAT Performance Assurance Implementation Plan (PAIP)
- 5. LAT-MD-00099-002, LAT EEE Parts Program Control Plan
- 6. LAT-SS-00107-1, LAT Mechanical Parts Plan
- 7. LAT-MD-00078-01, LAT System Safety Program Plan (SSPP)
- 8. ACD-QA-8001, ACD Quality Plan
- 9. <u>LAT-TD-00760-D1</u> Selection of ACD Photomultiplier Tube


- 10. <u>LAT-DS-00739-1</u> Specifications for ACD Photomultiplier Tubes
- 11. <u>LAT-TD-00438-D2</u> LAT ACD Light Collection/Optical Performance Tests
- 12. <u>LAT-TD-00720-D1</u> ACD Phototube Helium Sensitivity
- 13. <u>LAT-DS-00740-1</u> Temperature Characteristics of ACD Photomultiplier Tubes
- 14. Response to RFQ 5-09742, Hamamatsu Photomultiplier Tube Proposal


AM, 11/25/2002 ACD\Flight\Tests\PMT flight\PMT rate.doc

4. How the ACD PMT low-current divider handles high particle rates

ACD PMT voltage divider (resistor network) is designed to minimize the power consumption through the HV line. The maximum estimated single-charged particle rate on the orbit is 1-2 kHz, ACD Level III requirements require the maximum rate of 3 KHz to be handled by ACD. Assuming 1 pC per pulse and rate of 3 KHz, the average anode PMT current is ~3 nA. The divider has to provide at least factor of 100 higher current. Our divider is designed to provide ~ 1 mkA at 800 V.

How the PMT output changes with the particle rate is the subject of these notes. The signals were imitated by LED placed at the PMT face, with the signals from PMT to look similar to that produced by real particles – here cosmic muons. The phototube was one of the qualification Hamamatsu 4443 tubes with a flight-like resistor network.

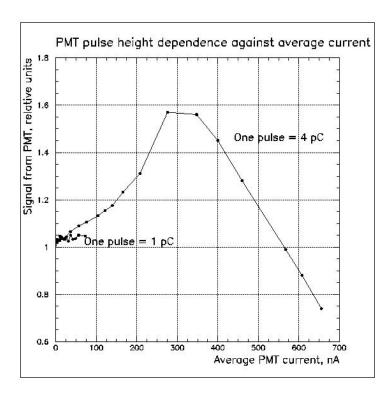
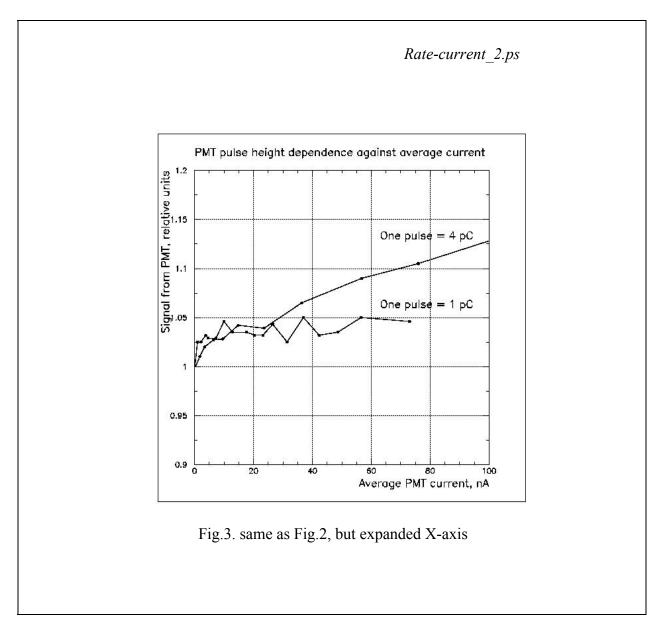



Fig.2. The same data as in Fig.1, but plotted against the average PMT anode current

Conclusion. Fig.1 shows that up to several tens of KHz there will no visible change of PMT performance for the signals of ~ 1pC. For larger signals we see the effect of signals increase, and after that decrease (saturation). Fig. 2 and 3 (expanded view) show the same results but plotted against the average PMT anode current. It can concluded that our PMT divider performs properly in required rate/anode current range